Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system.
نویسندگان
چکیده
Lithium alloys of group IV elements such as silicon and germanium are attractive candidates for use as anodes in high-energy-density lithium-ion batteries. However, the poor capacity retention arising from volume swing during lithium cycling restricts their widespread application. Herein, we report high reversible capacity and superior rate capability from core-shell structure consisting of germanium nanorods embedded in multiwall carbon nanotubes. To understand how the core-shell structure helps to mitigate volume swings and buffer against mechanical instability, transmission electron microscopy, X-ray diffraction, and in situ (7)Li nuclear magnetic resonance were used to probe the structural rearrangements and phase evolution of various Li-Ge alloy phases during (de)alloying reactions with lithium. The results provide insights into amorphous-to-crystalline transition and lithium germanide alloy phase transformation, which are important reactions controlling performance in this system.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملSurface studies of phase formation in Co–Ge system: Reactive deposition epitaxy versus solid-phase epitaxy
Morphological evolution of cobalt germanide epilayers, CoxGey, was investigated in situ by scanning tunneling microscopy and spectroscopy and reflection high-energy electron diffraction, as a function of deposition method and, hence, the phase content of the epilayer. During reactive deposition epitaxy, in which Co atoms were evaporated onto a flat pseudomorphic Ge/Si(001) wetting layer at 773 ...
متن کاملLimits of mechanical energy storage and structural changes in twisted carbon nanotube ropes
Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we determine the elastic range and energy storage capacity of twisted ...
متن کاملModeling Investigation of Dielectric Constant Effect on NMR and IR Properties of C48 as a Single Walled Carbon Nanotube
A cluster model for active site of nanotube (C48) was presented and investigated the geometricstructure and thermochemical parameters. Quantum-mechanical calculations were performed at theHF / 510-30, 6-310, 6-3 IG• and 6-310" levels of theory in the gas phase and three solvents atfour temperatures. Also, nuclear shielding parameters of the active site of nanotube have been takeninto account us...
متن کاملA Comprehensive Study on a Latent Heat Thermal Energy Storage System and its Feasible Applications in Greenhouses
Abstract Energy crisis is a major challenge in the current world. Latent heat thermal energy storage (LHTES) systems are known as equipment with promising performance by which thermal energy can be recovered. In the present study a comprehensive theoretical and experimental investigation is performed on a LHTES system containing PEG1000 as phase change material (PCM). Discussed topics can be ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 7 شماره
صفحات -
تاریخ انتشار 2015